Abstract
In this paper, we present LMI-based synthesis tools for regional stability and performance of linear anti-windup compensators for linear control systems. We consider both static and dynamic compensators. Algorithms are developed that minimize the upper bound on the regional L 2 gain for exogenous inputs with L 2 norm bounded by a given value, and that minimize this upper bound with a guaranteed reachable set or domain of attraction. Based on the structure of the optimization problems, it is shown that for systems whose plants have poles in the closed left-half plane, plant-order dynamic anti-windup can achieve semiglobal exponential stability and finite L 2 gain for exogenous inputs with L 2 norm bounded by any finite value. The problems are studied in a general setting where the only requirement on the linear control system is well-posedness and internal stability. The effectiveness of the proposed techniques is illustrated with an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.