Abstract
During the COVID-19 pandemic, face masks were the first line of defense against the spread of infection. However, infectious viruses may remain on medical textiles, potentially serving as an additional source of infection. Due to their chemical inertness, many textiles cannot be enhanced with antiviral functionalities. Through treatment with low-pressure gaseous plasma, we have activated the surface of a medical-grade melt-blown, non-woven polypropylene textile so that it can absorb sodium dodecyl sulfate, an antimicrobial surfactant. Within two hours of contact time, the functionalized textile has been able to inactivate over 7 log10 PFU mL−1 of bacteriophage phi6, a surrogate of enveloped viruses such as SARS-CoV-2, and it has retained its antiviral properties for over 100 days. The functionalized material has not disrupted facial mask filtration efficiency or breathability. In addition, the in vitro biocompatibility testing in accordance with ISO 10993-5 for testing of medical devices has demonstrated that the selected formulation causes no adverse effects on the mouse fibroblast cell line L-929. With the treatment processes that have been completed within seconds, the method seems to have great potential to produce antiviral textiles against future outbreaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.