Abstract

While upregulation of 2,3-dioxygenase (IDO) accompanied by degradation of tryptophan along the kynurenine pathway have been reported to exert antimicrobial effects against a wide range of infectious agents, its role in the replication of influenza A virus remains uncertain. We performed experiments using influenza A/WSN/33 virus infection of mouse fibroblast cell-line (NIH-3T3) to study the effects of IDO on viral replication. Influenza infection resulted in prominent elevations of transcripts encoding IDO, interferon (IFN)-β, and segment 8 of the virus in NIH-3T3 cells. Introduction of siRNA targeted against IDO followed by infection resulted in further increased levels of viral RNA without altering IFN-β expression. Inhibition of IDO during the infection also resulted in reduction of virus-driven upregulation of 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), but not kynurenine 3-monooxygenase (KMO), which are enzymes downstream in the kynurenine pathway. Thus, induction of IDO appears to contribute to limiting replication of the WSN/33 strain of influenza A virus in murine NIH-3T3 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call