Abstract
SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.