Abstract

The dengue virus is a mosquito-borne pathogen responsible for an estimated 50–100million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitor’s ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1μM over 3days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.