Abstract

Photodynamic therapy (PDT) with hypericin has been shown to inhibit tumor growth in different tumor models, and tumor vascular damage was suggested to be mainly responsible for the antitumoral effect. Here, we demonstrate tumor vascular damage and its consequence on local tumor control after hypericin-mediated PDT by using both short and long drug-light intervals. Radiation-induced fibrosarcoma-1 tumors were exposed to laser light at either 0.5 or 6 h after a 5 mg/kg dose of hypericin. Tumor perfusion was monitored by fluorescein dye-exclusion assay and by Hoechst 33342 staining of functional blood vessels. Significant reduction in tumor perfusion was found immediately after both PDT treatments. A complete arrest of vascular perfusion was detected by 15 h after the 0.5 h-interval PDT, whereas well-perfused areas could still be found at this time in tumors after the 6 h-interval PDT. A histological study confirmed that primary vascular damage was involved in both PDT treatments. Tumor cells appeared intact shortly after light treatment, degenerated at later hours and became extensively pycnotic at 24 h after the 0.5 h-interval PDT. PDT under this condition led to complete tumor cure. In contrast, significant numbers of viable tumor cells, especially at the tumor periphery, were found histologically at 24 h after the 6 h-interval PDT. No tumor cure was obtained when PDT was performed at this time. Our results strongly suggest that targeting the tumor vasculature by applying short drug-light interval PDT with hypericin might be a promising way to eradicate solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call