Abstract

BackgroundThe increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells.ResultsThe three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5.ConclusionsAltogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.

Highlights

  • The increasing availability of different monoclonal antibodies opens the way to more specific biologic therapy of cancer patients

  • Many other monoclonal antibodies (mAbs) directed against cell surface molecules of lymphoid leukaemic cells (CD4, CD19, CD22, CD23, CD30 CD40, CD74, CD80, human leukocyte antigen (HLA)-DR, CCR4) or molecules over-expressed in tumour cells (CD71) are currently in clinical trial or in development

  • In order to investigate the potential therapeutic activity against CD5+ B malignancies of new murine monoclonal antibodies directed against CD5, CD71 and HLADR antigens, we evaluated their action, as single agents, and in combination of two mAbs

Read more

Summary

Introduction

The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. Despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. New mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Anti-CD20 rituximab (Mabthera, Rituxan) has been extensively used and approved for the treatment of patients with various types of B-cell Non-Hodgkin Lymphoma (NHL). We will focus on three monoclonal antibodies directed against antigens strongly associated with the B-cell lymphoid leukaemia phenotype [1,2]: CD5, CD71 and HLA-DR

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call