Abstract

Bacterial outer membrane vesicles (OMVs) are spherical microbubbles that contain biological content and are produced by gram-negative bacteria. The use of OMVs as adjuvants for cancer immunotherapy or as drug carriers for targeted therapies has attracted the interest of many scholars. However, it is unclear whether OMVs can exert direct antitumor effects and whether OMVs can inhibit pediatric tumors. Here, we explore the potential of Escherichia coli-derived OMVs to directly suppress neuroblastoma. Our results demonstrate the antitumor effects of OMVs in vitro and in vivo, and no serious adverse reactions were observed. OMV uptake into the cytoplasm and nucleus directly decreases cell stemness, DNA damage, apoptosis and cell cycle arrest, which may be the mechanisms by which OMVs suppress tumors. Our results demonstrate the potential of bacterial OMVs to be used as antitumor adjuvant therapies, increasing the number of candidates for the development of cancer therapies in the future. More relevant studies are urgently needed to demonstrate the efficacy and safety of OMVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.