Abstract

Various metal oxide nanomaterials have been widely used as carriers to prepare pH-sensitive nanomedicines to respond to the acidic tumor microenvironment promoting antitumor efficiency. Herein, we used zinc oxide nanoparticles (ZnO NPs) as metal oxide nanomaterial coated with low-molecular-weight heparin (LMHP) and doxorubicin (DOX) complex (LMHP-DOX) to prepare ZnO-LD NPs for controllable pH-triggered DOX release on the targeted site. Our results indicated that the released DOX from ZnO-LD NPs was pH-sensitive. The oxygen produced by ZnO-LD NPs in H2O2 solution was observed in in vitro experiment. The ZnO-LD NPs entered into both PC-3M and 4T1 tumor cells via clathrin-mediated endocytosis and micropinocytosis pathway. The intracellular reactive oxygen species (ROS) generated by ZnO-LD NPs could significantly increase the caspase 3/7 level, leading to tumor cell apoptosis. The in vitro and in vivo antitumor activity was confirmed in PC-3M and 4T1 cell lines or tumor-bearing mice models. The in vivo and in vitro tumor images via second-order nonlinearity of ZnO-LD NPs indicated that ZnO-LD NPs could penetrate deep into the tumor tissues. Therefore, the ZnO-LD NPs developed in our study could provide an efficient approach for the preparation of pH-sensitive nano delivery systems suitable for tumor therapy and imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call