Abstract

e15052 Background: Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) that regulate downstream target genes expression, and then promotes tumor cell proliferation, metastasis and drug resistance. EZH2 also performs some functions in a PRC2-independent manner. Most of reported EZH2 inhibitors are S-adenosyle-methionine (SAM)-competitive inhibitor, and are less selective for EZH2 close homolog EZH1, which resulted in safety concerns and insufficient efficacy. To obtain irreversible EZH2 inhibitor, a novel covalent inhibitor was developed and characterized. Methods: SKLB-0322 and its derivatives were designed, synthesized and confirmed as EZH2 covalent inhibitor by us. The anti-tumor activities of SKLB-0322 were investigated by MTT assay, flow cytometry, and western blot assay. The reversible analog of SKLB-0322 (SKLB-0322’) was used as negative control. Results: SKLB-0322 inhibited EZH2 methyltransferase activity with nanomolar potency, while the inhibitory activities of SKLB-0322’ was reduced. The mass spectrometry (MS) analyses revealed that SKLB-0322 could efficiently forms a single modified covalent adduct. SKLB-0322 displayed noteworthy potency against ovarian cancer cell lines at low micromolar level and reduced the expression level of H3K27me3 in a concentration-dependent manner, which was about 5-fold more active than the reversible negative control SKLB-0322’. Besides, SKLB-0322 caused G2/M phase cell cycle arrest in A2780 and PA-1 cells. Furthermore, SKLB-0322 induced A2780 and PA-1 cell apoptosis in a time- and concentration- dependent manner. Conclusions: Our data clarified that SKLB-0322 is an EZH2 covalent inhibitor for ovarian cancer therapy which is worthy of further evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call