Abstract

Silver nanoparticles (AgNPs) have a wide range of industrial and biomedical applications. The aim of the present study was to determine the cytotoxic and genotoxic effects of AgNPs on Ehrlich carcinoma-bearing mice. AgNPs were characterized by ultraviolet-visible absorption spectroscopy, dynamic light scattering, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity and genotoxicity of AgNPs were evaluated using a series of assays: superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) levels, DNA damage (comet assay), and histopathological examination of tissues and tumor size in Ehrlich carcinoma-bearing mice. Treatment of Ehrlich carcinoma-bearing mice with various concentrations of AgNPs (6, 24, and 48mg/kg) injected intra peritoneal (IP) and intra tumor (IT) revealed that AgNPs significantly elevated the levels (0.5- to 5-fold) of MDA and reduced the activity (32-64%) of SOD. Furthermore, AgNPs caused a 2- to 3-fold increase in comet parameters such as percent tail DNA. Additionally, AgNPs inhibit the promotion of Ehrlich carcinoma by masses of necrotic and fragmented tumor cells. Consequently, the volume of tumor reduced by about 31-95% compared to control one. The results indicate that AgNPs possess cytotoxic and genotoxic effects against Ehrlich tumor and confirm the antitumor properties of AgNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call