Abstract

The tumor microenvironment is highly immunosuppressive. The genetically modified oncolytic vaccinia virus (OVV) is a promising vector for cancer immunotherapy. The aim of the present study was to assess the antitumor effects of human interleukin-2 (hIL2)-armed OVV in vitro. The hIL2 gene was inserted into a thymidine kinase and the viral growth factor double deleted oncolytic VV (VVDD) to generate recombinant hIL2-armed OVV (rVVDD-hIL2). Viral replication capacity in A549 cells was quantified by plaque titration on CV-1 cells. Production of hIL2 in cancer cells infected by rVVDD-hIL2 was measured by enzyme-linked immunosorbent assay. Finally, 3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was performed to assess the antitumor effects of rVVDD-hIL2. The results showed that rVVDD-hIL2 viral particles expressed increasing levels of hIL2 in human and murine cancer cell lines with growing multiplicities of infection (MOIs). The insertion of the hIL2 gene did not impair the replication capacity of VV, and the rVVDD-hIL2 virus killed cancer cells efficaciously. The lytic effects of the recombinant oncolytic virus on tumor cells increased with the growing MOIs. In conclusion, these findings suggest that hIL2-armed VVDD effectively infects and lyses tumor cells, with high expression of hIL2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.