Abstract

BackgroundAnti-PD-1/PD-L1 drugs are effective as monotherapy in a proportion of NSCLC patients and there is a strong rationale for combining them with targeted therapy. Inhibition of MAPK pathway may have pleiotropic effects on the microenvironment. This work investigates the efficacy of combining MEK and PD-L1 inhibition in pre-clinical and ex-vivo NSCLC models.MethodsWe studied the effects of MEK inhibitors (MEK-I) on PD-L1 and MCH-I protein expression and cytokine production in vitro in NSCLC cell lines and in PBMCs from healthy donors and NSCLC patients, the efficacy of combining MEK-I with anti-PD-L1 antibody in ex-vivo human spheroid cultures obtained from fresh biopsies from NSCLC patients in terms of cell growth arrest, cytokine production and T-cell activation by flow cytometry.ResultsMEK-I modulates in–vitro the immune micro-environment through a transcriptionally decrease of PD-L1 expression, enhance of MHC-I expression on tumor cells, increase of the production of several cytokines, like IFNγ, IL-6, IL-1β and TNFα. These effects trigger a more permissive anti-tumor immune reaction, recruiting immune cells to the tumor sites. We confirmed these data on ex-vivo human spheroids, showing a synergism of MEK and PD-L1 inhibition as result of both direct cancer cell toxicity of MEK-I and its immune-stimulatory effect on cytokine secretion profile of cancer cells and PBMCs with the induction of the ones that sustain an immune-reactive and inflammatory micro-environment.ConclusionsOur work shows the biological rationale for combining immunotherapy with MEK-I in a reproducible ex-vivo 3D-culture model, useful to predict sensitivity of patients to such therapies.

Highlights

  • Anti-PD-1/programmed cell death ligand-1 (PD-L1) drugs are effective as monotherapy in a proportion of Non-small cell lung cancer (NSCLC) patients and there is a strong rationale for combining them with targeted therapy

  • PD-L1 expression was heterogeneous across cell lines but the correlation between mRNA and protein level was consistent for any cell line, suggesting that ectopic PD-L1 expression mainly depends on transcriptional regulation

  • We evaluated the changes in PD-L1 protein and mRNA expression after 24-h of treatment with 1 μM selumetinib and we recorded a significant decrease of PD-L1 levels (Fig. 2a, b, Additional file 2: Figure S2)

Read more

Summary

Introduction

Anti-PD-1/PD-L1 drugs are effective as monotherapy in a proportion of NSCLC patients and there is a strong rationale for combining them with targeted therapy. Among anti-PD-L1 drugs, atezolizumab (MPDL3280A) is an engineered IgG antibody, with a modified Fc domain that prevents antibody-dependent cell-mediated cytotoxicity, approved by FDA for second line treatment of NSCLC. This approval came from results of the randomized, open-label, phase III trial (OAK) [6]: atezolizumab, compared to the standard of care represented by docetaxel chemotherapy, prolonged the overall survival (OS), both in the intention to treat (ITT) population (median OS: 13.8 vs 9.6 months; hazard ratio [HR] 0.73, p = 0.0003) and in the PD-L1-positive (1/2/3 or IC1/2/3) population (median OS: 15.7 vs 10.3 months; HR 0.74; p = 0.0102), demonstrating a clinically relevant efficacy, regardless of PD-L1 expression. Selumetinib is a potent and highly selective reversible MEK inhibitor (MEK-I), currently approved in combination with vemurafenib, a BRAF-inhibitor (BRAF-I), for advanced BRAF-mutated melanoma patients

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.