Abstract

Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients.

Highlights

  • Pancreatic cancer (PC) is a highly aggressive human malignancy worldwide with an extremely poor prognosis [1]

  • We showed the cytotoxic effects of curcumin on PC cell lines

  • We found that curcumin significantly suppressed cell proliferation and promoted cell apoptosis in a dose-dependent manner in both Patu8988 and Panc-1 cells

Read more

Summary

Introduction

Pancreatic cancer (PC) is a highly aggressive human malignancy worldwide with an extremely poor prognosis [1]. Curcumin exhibits its anticancer effects against different types of cancer by targeting multiple therapeutically important cancer signaling pathways www.impactjournals.com/oncotarget such as Ras, mTOR (mammalian target of rapamycin), FOXO1 (forkhead box protein 1), Wnt/β-catenin, PI3K (phosphoinosmde-3-kinase) and AKT pathways [5,6,7,8]. These results revealed that targeting numerous of signaling molecules regulated by curcumin could represent a novel strategy for the treatment of PC patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call