Abstract
Ionizing radiation significantly alters the structure and function of microvasculature, which regulates delivery of oxygen to brain tissue. Previous experimental and modeling studies have shown that tissue oxygenation patterns are significantly different in irradiated normal tissue compared to age-matched controls, and the differences are apparent as early as 3 days postirradiation. However, oxygen delivery to irradiated tissue recovers within 6 months postirradiation. Changes in perfusion and oxygenation were studied in a bilaterally (both cerebral hemispheres) and unilaterally (only one hemisphere) irradiated mouse brain model at 6 and 24 h as well as 3, 7, 30, 60 and 120 days postirradiation. The results indicate that significant changes in the number of perfused vessels (as measured by fluorescent DiOC(7) staining) and anatomical vessels (as indicated by CD31 immunohistochemical staining) and tissue oxygenation (by immunohistochemical detection of a fluorescently conjugated monoclonal antibody to EF5) are most pronounced at 3 days postirradiation, while a degree of recovery is observed at later times. However, in the unilaterally irradiated animals, both irradiated and unirradiated (out-of-field) cerebral hemispheres showed similarly significant changes in oxygenation and/or perfusion compared to unirradiated controls. Anti-TNFA treatment inhibited radiation-induced local as well as abscopal effects in the brain tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.