Abstract

Thrombin-mediated activation of human platelets involves the G-protein-coupled protease-activated receptors PAR1 and PAR4. Inhibition of PAR1 and/or PAR4 is thought to modulate platelet activation and subsequent procoagulant reactions. However, the antithrombotic effects of PAR1 and PAR4 antagonism have not been fully elucidated, particularly under flow conditions. A microchip-based flow chamber system was used to evaluate the influence of SCH79797 (PAR1 antagonist) and YD-3 (PAR4 antagonist) on thrombus formation mediated by collagen and tissue thromboplastin at shear rates simulating those experienced in small- to medium-sized arteries (600s(-1)) and large arteries and small veins (240s(-1)). At a shear rate of 600s(-1), SCH79797 (10μM) efficiently reduced fibrin-rich platelet thrombi and significantly delayed occlusion of the flow chamber capillary (1.44 fold of control; P<0.001). The inhibitory activity of SCH79797 was diminished at 240s(-1). YD-3 (20μM) had no significant effect at either shear rate. The antithrombotic effects of SCH79797 were significantly augmented when combined with aspirin and AR-C66096 (P2Y12 antagonist), but not with YD-3. In contrast, no significant inhibition of tissue factor-induced clot formation under static conditions was observed in blood treated with SCH79797 and YD-3, although thrombin generation in platelet-rich plasma was weakly delayed by these antagonists. Our results suggest that the antithrombotic activities of PAR1 and/or PAR4 antagonism is influenced by shear conditions as well as by combined platelet inhibition with aspirin and a P2Y12-antagonist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call