Abstract

This study presents the utilization of a novel, highly lipophilic nitric oxide (NO) donor molecule, S-nitroso-1-adamantanethiol (SNAT), for developing an NO-emitting polymer surface aimed at preventing thrombus formation and bacterial infection in extracorporeal circuits (ECCs). S-nitroso-1-adamantanethiol, a tertiary nitrosothiol-bearing adamantane species, was synthesized, characterized, and used to impregnate polyvinyl chloride (PVC) tubing for subsequent in vivo evaluation. The impregnation process with SNAT preserved the original mechanical strength of the PVC. In vitro assessments revealed sustained NO release from the SNAT-impregnated PVC tubing (iSNAT), surpassing or matching endothelial NO release levels for up to 42 days. The initial NO release remained stable even after 1 year of storage at -20°C. The compatibility of iSNAT with various sterilization techniques (OPA Plus, hydrogen peroxide, EtO) was tested. Acute in vivo experiments in a rabbit model demonstrated significantly reduced thrombus formation in iSNAT ECCs compared with controls, indicating the feasibility of iSNAT to mitigate coagulation system activation and potentially eliminate the need for systemic anticoagulation. Moreover, iSNAT showed substantial inhibition of microbial biofilm formation, highlighting its dual functionality. These findings underscore the promising utility of iSNAT for long-term ECC applications, offering a multifaceted approach to enhancing biocompatibility and minimizing complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.