Abstract

AimsThrombin formation is increased in patients with acute cerebral ischemic stroke, and augments coagulation and inflammation in the brain. Administration of antithrombin (AT) was previously reported to be protective against renal and myocardial ischemic injury. Thus, we hypothesized that treatment with AT would be neuroprotective against cerebral ischemic injury. This study evaluated the effects of AT treatment on ischemic inflammation and brain damage in mice subjected to middle cerebral artery occlusion (MCAO). Main methodsA mouse model of 4-hour MCAO was used to induce ischemic brain injury. Recombinant AT gamma was administered intravenously immediately after reperfusion at 4 h after MCAO. Infarct volume, neurological deficit, and regional cerebral blood flow (rCBF) were measured at 24 h after MCAO. To evaluate the effect of AT gamma on ischemic inflammation, we measured the number of Iba1-positive cells (marker of macrophage/microglial activation) and levels of proinflammatory cytokines. Further, we investigated the direct anti-inflammatory effects of rAT in the J774.1 cell line. Key findingsTreatment with AT gamma (480 U/kg) reduced infarct volume and neurological deficit, and improved rCBF, in MCAO mice. Moreover, AT gamma treatment decreased the number of Iba1-positive cells and levels of proinflammatory cytokines. In vitro, treatment with thrombin significantly increased proinflammatory cytokine levels, which was significantly reduced by pretreatment with AT gamma. SignificanceTreatment with AT showed neuroprotective effects via anticoagulation actions, as well as direct anti-inflammatory effects on macrophage/microglial activation. These data suggest that AT may be a useful new therapeutic option for cerebral ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call