Abstract

In this paper we introduce a new multilevel Monte Carlo (MLMC) estimator for multi-dimensional SDEs driven by Brownian motions. Giles has previously shown that if we combine a numerical approximation with strong order of convergence $O(\Delta t)$ with MLMC we can reduce the computational complexity to estimate expected values of functionals of SDE solutions with a root-mean-square error of $\epsilon$ from $O(\epsilon^{-3})$ to $O(\epsilon^{-2})$. However, in general, to obtain a rate of strong convergence higher than $O(\Delta t^{1/2})$ requires simulation, or approximation, of Lévy areas. In this paper, through the construction of a suitable antithetic multilevel correction estimator, we are able to avoid the simulation of Lévy areas and still achieve an $O(\Delta t^{2})$ multilevel correction variance for smooth payoffs, and almost an $O(\Delta t^{3/2})$ variance for piecewise smooth payoffs, even though there is only $O(\Delta t^{1/2})$ strong convergence. This results in an $O(\epsilon^{-2})$ complexity for estimating the value of European and Asian put and call options.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.