Abstract

Rogue buckles may occur for unburied subsea pipelines operating under high temperature and high pressure conditions. Distributed buoyancy section (DBS) is often installed to trigger pipeline lateral buckling. Single distributed buoyancy section (SDBS) is normally adopted to trigger a symmetric lateral buckling mode. But in some cases, dual distributed buoyancy sections (DDBS) with a gap between them are utilised to trigger an antisymmetric lateral buckling mode. This paper concerns the behaviour of antisymmetric lateral buckling triggered by DDBS. First, the locations of the maxima of the deflection and bending stress are determined. Then, comparisons of the post-buckling behaviour between antisymmetric buckling mode, triggered by DDBS, and symmetric buckling mode, triggered by SDBS, are presented and discussed. The influences of the spacing between dual buoyancy sections and the parameters of the DBS on the buckled configuration and post-buckling behaviour are presented. Finally, the effects of the DBS on the minimum critical temperature difference, the maxima of the deflection and stress are discussed. The results show that the maxima of the deflection and stress of the antisymmetric mode are much smaller than that of the symmetric mode under the same operating conditions. During the design process, the spacing between dual buoyancy sections, the length and the weight ratio coefficient of the DBS should be determined in sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.