Abstract

The oscillation of the neutron n into mirror neutron n′, its partner from the dark mirror sector, can gradually transform an ordinary neutron star into a mixed star consisting in part of mirror dark matter. The implications of the reverse process taking place in the mirror neutron stars depend on the sign of baryon asymmetry in the mirror sector. Namely, if it is negative, as predicted by certain baryogenesis scenarios, then n′¯−n¯ transitions create a core of our antimatter gravitationally trapped in the mirror star interior. The annihilation of accreted gas on such antimatter cores could explain the origin of γ-source candidates with an unusual spectrum compatible with baryon–antibaryon annihilation, recently identified in the Fermi LAT catalog. In addition, some part of this antimatter escaping after the mergers of mirror neutron stars can produce the flux of cosmic antihelium and also heavier antinuclei which are hunted in the AMS-02 experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.