Abstract

The focus of this study was to examine antisolvent effects, which hold significance in particulate processes, such as crystallization and precipitation. In the first section, an experimental investigation revealed that C1–C4 primary alcohols significantly reduced the solubility of potassium dihydrogen phosphate (KDP) in water. The solid–liquid equilibria of KDP solutions were determined using an innovative polythermal method, demonstrating time and labor efficiency compared to the traditional isothermal method while maintaining solubility determination quality. This achievement established an efficient tool for high-throughput solvent screening, a crucial aspect of particulate process development. In addition to the experimental approach, in the second part, the influence of these alcohols on KDP solubility was analyzed using the eNRTL thermodynamics model. The model’s estimated parameters confirmed that the addition of these alcohols induced strong non-ideal behavior in the solutions, altered interactions between solute species and solvent components, and reduced KDP solubility. Under the effects of these alcohols, KDP solubility generally increased with the length of the alkyl chain in the added alcohols, although methanol deviated from this observation. Furthermore, the present work also discussed the limitation of the well-known Bromley’s equation, particularly when applied for KDP in alcohol–water mixed solvents. Consequently, binary and ternary systems consisting of KDP, water, and C1–C4 primary alcohols were successfully modeled using eNRTL. Furthermore, it was determined that the obtained model was insufficient for quaternary systems with a higher alcohol content, particularly when high-order interactions were neglected as in the cases of binary and ternary systems. In short, these investigated alcohols have potential for future applications in the design of particulate processes, with a particular emphasis on antisolvent crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.