Abstract

Over the past decade, a wealth of small noncoding RNAs (sRNAs) have been discovered in the genomes of almost all bacterial species, where they constitute the most abundant class of posttranscriptional regulators. These sRNAs are key-players in prokaryotic metabolism, stress response and virulence. However, the first bona-fide antisense RNAs had been found already in 1981 in plasmids, where they regulate replication or maintenance. Antisense RNAs involved in plasmid replication control – meanwhile investigated in depth for almost 35 years – employ a variety of mechanisms of action: They regulate primer maturation, inhibit translation of essential replication initiator proteins (Rep proteins) as well as leader peptides or the formation of activator pseudoknots required for efficient rep translation. Alternatively they attenuate transcription or translation of rep mRNAs. Some antisense RNAs collaborate with transcriptional repressors to ensure proper copy-number control. Here, I summarize our knowledge on replication control of the broad-host range plasmid pIP501 that was originally isolated from Streptococcus agalactiae. Plasmid pIP501 uses two copy number-control elements, RNAIII, a cis-encoded antisense RNA, and transcriptional repressor CopR. RNA III mediates transcription attenuation, a rather widespread concept that found its culmination in the recent discovery of riboswitches. A peculiarity of pIP501 is the unusual stability of RNA III, which requires a second function of CopR: CopR does not only repress transcription from the essential repR promoter, but also prevents convergent transcription between rep mRNA and RNAIII, thereby indirectly increasing the amount of RNAIII. The concerted action of these two control elements is necessary to prevent plasmid loss at dangerously low copy numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.