Abstract

A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion), but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON) in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g., in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis. AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover (1). The principles of antisense-mediated techniques, chemistry, and efficacy. (2) The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial, and temporal control over gene expression, toxicity, and delivery issues. (3) The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the central nervous system can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.

Highlights

  • In mammals the brain orchestrates a variety of different processes ranging from maintaining homeostasis to complex behavioral outputs

  • Most applications of antisense-mediated manipulation have been directly inspired by splice events that are relevant for a number of human genetic diseases, but the approach may well be incorporated in the general molecular toolkit we have available for tackling current neuroscientific questions in vivo

  • 5% of amyotrophic lateral sclerosis (ALS) cases are familial and about 20% of all familial cases result from a specific genetic defect that leads to mutation of the enzyme known as superoxide dismutase 1 (SOD1) rendering the protein toxic and prone to aggregation (Bossy-Wetzel et al, 2004)

Read more

Summary

MOLECULAR NEUROSCIENCE

Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain. We discuss here the potential of antisense-mediated RNA targeting approaches. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON) in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs.These are powerful, specific and versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. (2) The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial, and temporal control over gene expression, toxicity, and delivery issues.

INTRODUCTION
Splicing modulation in the brain
RNase H independent translational block
Cannot be applied to first and last exons of transcripts
Findings
AONs AS EXPERIMENTAL TOOLS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call