Abstract
Antisense oligonucleotides (ASO) against specific molecular targets (e.g., Bcl-2 and Raf-1) are important reagents in cancer biology and therapy. Phosphorothioate modification of the ASO backbone has resulted in an increased stability of ASO in vivo without compromising, in general, their target selectivity. Although the power of antisense technology remains unsurpassed, dose-limiting side effects of modified ASO and inadequate penetration into the tumor tissue have necessitated further improvements in ASO chemistry and delivery systems. Oligonucleotide delivery systems may increase stability of the unmodified or minimally modified ASO in plasma, enhance uptake of ASO by tumor tissue, and offer an improved therapy response. Here, we provide an overview of ASO design and in vivo delivery systems, and focus on preclinical validation of a liposomal nanoparticle containing minimally modified raf antisense oligodeoxynucleotide (LErafAON). Intact rafAON (15-mer) is present in plasma and in normal and tumor tissues of athymic mice systemically treated with LErafAON. Raf-1 expression is decreased in normal and tumor tissues of LErafAON-treated mice. Therapeutic benefit of a combination of LErafAON and radiation or an anticancer drug exceeds radiation or drug alone against human prostate, breast, and pancreatic tumors grown in athymic mice. Further improvements in ASO chemistry and nanoparticles are promising avenues in antisense therapy of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.