Abstract

Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis) as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO) designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1) was identified and conjugated to a cell penetrating peptide (GS-PPMO) to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development.

Highlights

  • Acid α-glucosidase (GAA) is a lysosomal enzyme that catalyzes the breakdown of glycogen to glucose

  • An substrate reduction therapy approach could be coupled with recombinant human GAA (rhGAA) treatment in Pompe patients with more severe disease to effect more rapid clearance of glycogen from skeletal muscle

  • Recent studies employing a double genetic knockout of Gys[1] and GAA demonstrate characteristics of glycogen accumulation in a model of Pompe disease, cardiomegaly and type II muscle fiber atrophy, can be abrogated by knocking out Gys1.30 In the same study, it was shown that Gys1/GAA double knockouts had better tetanic force generation and fatigue resistance compared to GAA knockout animals

Read more

Summary

Introduction

Acid α-glucosidase (GAA) is a lysosomal enzyme that catalyzes the breakdown of glycogen to glucose. Mutations in the GAA gene that lead to a reduction in the amount or activity of the enzyme are the molecular basis of Pompe disease (glycogen storage disease type II). This autosomal recessive metabolic myopathy results as a consequence of the progressive accumulation of undegraded glycogen, primarily in the lysosomes of cardiac and skeletal muscle. Complete loss of enzyme activity results in an infantile presentation (so called “floppy babies”) with affected individuals rarely living beyond 2 years of age. Varying degrees of residual enzyme activity lead to a progressive myopathy in young adults as well as older individuals that is invariably fatal.[1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call