Abstract

The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.