Abstract

Existing models used to study the mechanism of action and antagonism of tachykinergic effects on intestinal contraction and secretion suffer from technical problems and have not been fully characterized using specific tachykinin antagonists. Contraction of ileal segments by substance P, colonic circular muscle by beta-alanine-neurokinin A, and longitudinal muscle by senktide were used as models for neurokinin-induced contraction in the guinea-pig. Guinea-pig colonic epithelial tissue was stimulated by substance P and senktide to assess NK1- and NK3-mediated secretion. Using these models the potency of therapeutically useful compounds was determined. NK1 and NK2 activation directly contracted smooth muscle, while NK1-mediated secretion was nerve-mediated. NK3 stimulation of contraction and secretion was neurally mediated, involving cholinergic nerves and 5-HT release. NK1-mediated contraction and secretion were antagonized by SR140333 (pD'2 = 9.29 and pKb = 8.53); NK2-mediated contraction was antagonised by SR48968 (pD'2 = 8.35) and NK3-mediated contraction and secretion were antagonized by SB223412 (pKb = 8.97 and 8.79). The mixed antagonist MDL103392 blocked NK1- and NK2-mediated contraction with pKb values of 7.92 and 6.71 respectively and NK1-mediated secretion with a pKb value of 6.57. This data characterizes existing tachykinin antagonists, and should orientate the development of improved compounds as therapies for intestinal disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.