Abstract
Since the completion of Three Gorges Dam in 2008, a large water-level fluctuation zone with anti-seasonal submergence has formed between the elevations of 145 m and 175 m in the Three Gorges Reservoir in China. In addition to hydrological regime, revegetation has also occurred in this water-level fluctuation zone. However, how the hydrological regime and revegetation regulate soil prokaryotic community remains unclear. Here, we investigated soil prokaryotic community structure, diversity and environmental parameters in different flooding zones from two soil layers (0–10 cm and 10–30 cm) at 6 locations along the water-level fluctuation zone from upstream to downstream. The soil prokaryotic diversity tended to decrease from upstream to downstream, and the alpha diversity was higher in the topsoil than in the deep soil at all sites. Flooding significantly enhanced the prokaryotic diversity compared to the control (i.e., permanent dry zone). The soil prokaryotic composition underwent deterministic processes in the upstream sites and stochastic processes in the downstream sites, with stronger stochastic processes in the topsoil than in the deep soil across all sites and elevations. As expected, the soil pH, moisture, NH4+-N, organic carbon and nitrogen were proven to be determinants of the prokaryotic community composition. Changes in plant traits (plant biomass, richness, and carbon content) after revegetation induced by submergence also played an important role in structuring the prokaryotic community. The prokaryotic community exhibited a shorter average path distance (GD) in the flooding zones compared to the control, with the shortest average degree (avgK) and the lowest levels of stability in the longer periodic inundation zones. Overall, our results suggest that soil properties and plant functional traits are critical controls of the prokaryotic community's ability to develop at regional scales and water submergence can likewise be an important factor for variations in the prokaryotic community composition in riparian zones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.