Abstract

BackgroundThe present study revealed the grafting of extracted oleo gum resin of Boswellia serrata with polyacrylamide by conventional method with a principle of radical polymerization by using potassium per sulfate/ascorbic acid as redox initiator. A series of copolymer were synthesized using varying concentration of acrylamide at varying temperature. The optimum ratio for grafting was selected (1:2.5), on the basis of percent grafting and grafting efficiency. The grafted gum was further used as a nanocarrier to encapsulate cefuroxime axetil for their sustained release. Then, the nanoparticles were further analyzed by FT-IR, scanning electron microscopy, and DLS. The encapsulation efficiency (%), loading capacity (%) and drug content (%) was also calculated.ResultThe optimized nanoparticles have shown spherical morphology with dimension of 209.4 ± 20.46 nm along with entrapment efficiency (62.47 ± 4.23%), loading capacity (33.57 ± 3.01%) and drug content (89.35 ± 6.47%). The prepared nanoparticles had found to be more stable at 4 °C. The experiential results rationalize the effectiveness of cefuroxime axetil-loaded boswellic acid nanoparticles owing to higher cellular uptake, nonstop intercellular drug withholding and improved antiproliferative effect by initiating apoptosis.ConclusionThe significant anti-arthritic effect of developed nanoparticles may be endorsed due to its dimension, encapsulation efficiency, and long-lasting drug release profile. Thus, the developed nanoparticles may assume to be a hopeful formulation for rheumatoid arthritis, which requires further investigation and may recommend a novel track to arthritis patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call