Abstract

BackgroundWR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 also inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. In this study we expanded the original observations to define the dose-response curve for that inhibition, and address the question of additive effects for the combination of WR1065 plus Zidovudine (AZT). Here we also explored the effect of WR1065 on SIV by examining TCBs taken from macaques with well-established infections several months with SIV.ResultsTCBs from healthy human donors were infected for 2 hr with HIV-1, and viral replication (p24) was measured after 72 hr of incubation with or without WR1065, AZT, or both drugs. HIV-1 replication, in HIV-1-infected human TCBs, was inhibited by 50% at 13 μM WR1065, a dose at which 80% of the cells were viable. Cell cycle parameters were the same or equivalent at 0, 9.5 and 18.7 μM WR1065, showing no drug-related toxicity. Combination of AZT with WR1065 showed that AZT retained antiretroviral potency in the presence of WR1065. Cultured CD8+ T cell-depleted PHA-stimulated TCBs from Macaca mulatta monkeys chronically infected with SIV were incubated 17 days with WR1065, and viral replication (p27) and cell viability were determined. Complete inhibition (100%) of SIV replication (p27) was observed when TCBs from 3 monkeys were incubated for 17 days with 18.7 μM WR1065. A lower dose, 9.5 μM WR1065, completely inhibited SIV replication in 2 of the 3 monkeys, but cells from the third macaque, with the highest viral titer, only responded at the high WR1065 dose.ConclusionThe study demonstrates that WR1065 and the parent drug amifostine, the FDA-approved drug Ethyol, have antiretroviral activity. WR1065 was active against both an acute infection of HIV-1 and a chronic infection of SIV. The data suggest that the non-toxic drug amifostine may be a useful antiretroviral agent given either alone or in combination with other drugs as adjuvant therapy.

Highlights

  • WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy

  • The human immunodeficiency virus 1 (HIV-1) inhibition data are shown in Table 1, where 26 and 52 μM WR1065 gave 65% and 89% inhibition of HIV-1, respectively

  • In this study we examined the in situ effect of WR1065 in a second primate species infected with an immunodeficiency virus inducing AIDS-like symptoms, and demonstrated that WR1065 inhibits simian immunodeficiency virus (SIV) replication in T-cell blasts (TCBs) activated from macaques infected for 14 months with SIV

Read more

Summary

Introduction

WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. WR1065 selectively protects normal tissues, but not tumors, against ionizing radiation damage and chemotherapeutic drug cytotoxicity [12,13,14]. This compound has multiple biological activities, including ability to: detoxify reactive metabolites of chemotherapeutic agents; scavenge free radicals; modulate apoptosis; alter gene expression; and up-regulate mitochondrial manganese-superoxide dismutase [12,15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call