Abstract
We present broadband antireflective silicon (Si) nanostructures with hydrophobicity using a spin-coated Ag ink and by subsequent metal-assisted chemical etching (MaCE). Improved understanding of MaCE, by conducting parametric studies on optical properties, reveals a design guideline to achieve considerably low solar-weighted reflectance (SWR) in the desired wavelength ranges. The resulting Si nanostructures show extremely low SWR (1.96%) and angle-dependent SWR (<4.0% in the range of 0° to 60°) compared to that of bulk Si (SWR, 35.91%; angle-dependent SWR, 37.11%) in the wavelength range of 300 to 1,100 nm. Relatively large contact angle (approximately 102°) provides a self-cleaning capability on the solar cell surface.
Highlights
Over the past decades, a great deal of efforts has been carried out to improve the conversion efficiency of crystalline silicon (c-Si) solar cells, which occupy most of the solar cell market [1,2]
To achieve a high-efficiency c-Si solar cell, antireflective layers/structures are inevitably necessary for enhancing the transmission of the sunlight into the solar cells by suppressing surface reflection, which is caused by the refractive index difference at the air/c-Si interface
We investigated the influence of Si metal-assisted chemical etching (MaCE) conditions including the concentration of HNO3, HF, deionized (DI) water, and etching temperature on the morphologies and optical properties of Si nanostructures for obtaining the most appropriate antireflective Si nanostructures with self-cleaning function for solar cell applications
Summary
A great deal of efforts has been carried out to improve the conversion efficiency of crystalline silicon (c-Si) solar cells, which occupy most of the solar cell market [1,2]. To achieve a high-efficiency c-Si solar cell, antireflective layers/structures are inevitably necessary for enhancing the transmission of the sunlight into the solar cells by suppressing surface reflection, which is caused by the refractive index difference at the air/c-Si interface. To produce subwavelength-scale Si nanostructures, a dry etching method using nanoscale mask patterns has been commonly employed [7,8,9,10]. This method is complex, expensive, and inadequate for mass production and may cause damage to the crystal structure and surface morphology due to high-energy ions [11].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.