Abstract

Optical films with antireflective and self-cleaning surfaces have much potential for applications in solar cells, architectural glasses, and outdoor displays. Here we demonstrate the fabrication of novel self-cleaning antireflection (AR) thin films by depositing plasma-polymerized fluorocarbon (PPFC) which is fluorinated polymer consisting carbon and fluorine formed under plasma environment on Nb2O5/SiO2/Nb2O5 (NSN) trilayers using mid-range frequency power source in a continuous roll-to-roll sputtering system. The reflectance of PPFC/NSN films with a PPFC thickness of 70 nm was 1.71% at a wavelength of 528 nm, and the PPFC/NSN films showed low reflectance in a wide range in the visible region. The PPFC/NSN AR films exhibited a water-repelling surface with water contact angle of 105° after the application of a top fluorocarbon layer with low surface energy. We tested and confirmed the AR and self-cleaning functions of the PPFC/NSN films through the incorporation to perovskite solar cells (PSC). The short-circuit current density and power conversion efficiency of PPFC/NSN/HC-PET/PSC were 20.6 mA cm−2 and 17%. By attaching a self-cleaning AR films to both side of PSC, photocurrent collection of the device was improved and applicability of protective films to PSC was demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call