Abstract

Glass is the most widely used transparent material for photovoltaic (PV) panels. Unfortunately, the glass introduces an additional interface and therefore optical losses, which can be mitigated using antireflection (AR) coatings. This article reports a scalable method to prepare AR coatings from ZnO nanowires (NWs) sorted by their size. The measured AR performance depends on the coating coverage and ZnO NW size, which is explained by scattering and absorption cross section simulations. Randomly oriented and size fractioned ZnO NWs with an average diameter of 19–30 nm and lengths of 121–273 nm demonstrate increased transmittance and decreased reflectance compared to a glass substrate in case of low coverage. The experimental PV modules with ZnO NW coatings show an 1.2% increase of the short circuit current. A strategy to decouple ZnO NW synthesis from AR coating preparation allows to tune NW reflectance and other optical properties by varying the length, diameter, and orientation of the constituent NWs. The proposed AR coating made from size‐sorted nanomaterials is not limited to ZnO and the method could be adapted to other materials and nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.