Abstract
Adenosine 3′,5′-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) signaling have been implicated in antipsychotic drug action. This study examines the effects of acute antipsychotic treatment using typical (haloperidol) and atypical (olanzapine) agents on cAMP signaling in dorsal striatum, nucleus accumbens and medial prefrontal cortex in mice. PKA catalytic subunit (PKA-c) and phosphorylated cAMP response element-binding protein (pCREB) levels were measured to evaluate antipsychotic drug effects. Nuclear PKA-c levels increased in the dorsal striatum after haloperidol and olanzapine treatment. In medial prefrontal cortex, olanzapine produced dose-dependent decreases in PKA-c and pCREB levels. The differential effects of typical versus atypical antipsychotic agents on PKA and pCREB in striatal and cortical regions illustrate the diverging actions of these agents on cAMP pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.