Abstract

We present the energy spectrum of antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNR). The model includes reacceleration of already existing in interstellar medium antiprotons as well as creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shock. It is shown that antiprotons production in SNRs produces considerable effect in their resultant energy spectrum making it essentially flatter above 10 GeV so that the spectrum at TeV-energies increases by a factor of five. Calculated antiproton spectrum is well consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.