Abstract

We present a calculation of antiproton yields in Si+Al and Si+Au collisions at 14.5A GeV in the framework of the relativistic quantum molecular dynamics approach (RQMD). Multistep processes lead to the formation of high-mass flux tubes. Their decay dominates the initial antibaryon yield. However, the subsequent annihilation in the surrounding baryon-rich matter suppresses the antiproton yield considerably: Two-thirds of all antibaryons are annihilated even for the light Si+Al system. Comparisons with preliminary data of the E802 experiment support this analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.