Abstract

Cadmium selenide (CdSe) nanoparticles make necessary to acquire more information against the cytotoxic effects on human lung epithelial cells A549 potential adverse to health effects. More biological studies highlighted their cytotoxic potential like pulmonary or respiratory diseases were focused on toxicity nanoparticles mechanisms are involved. The aim of our research, is the comparison of cytotoxicity effect between cells-particle interactions, viability test, membrane integrity and oxidative stress were investigated. XRD showed a strong peak associated with (111) plane of hexagonal CdSe suggesting formation of highly orientated nanoparticles. The longitudinal optical phonon shifted slightly due to strain whereas strong low-energy shoulder shift can be explained within a model for surface optical phonons. Photocatalytic activity of CdSe nanoparticles were investigated by exploiting photocatalytic degradation of Rhodamine B (RhB). The typical UV–vis absorption spectra of RhB solution at different time intervals it can be clearly seen that the relative intensity of the absorption peak corresponding to RhB, with the catalyst for different concentration time intervals (0mM, 2mM, 5mM & 10mM) of the prepared CdSe nanoparticles. After completion of 5mM % the dye was completely degraded and the absorption spectra act as a photocatalyst. CdSe nanoparticles exhibits antibacterial activity over a broad range of bacterial species and in particular against P. vulgaris where it out competes four other commonly used S. aureus, E.coli, P. vulgaris and E. hermannii, well as testing four different appropriate concentration from the results showed a significant gain in viable cell numbers of all four bacteria species, with 5mM and 10mM being the most effective and 2mM being the worst, where it provided only a slight improvement from the control in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call