Abstract

Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD-101) and the benzamide Entinostat (MS-275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell-free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD-101 and MS-275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD-101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30-fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS-275 exhibited nearly a 2-fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS-275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.