Abstract

BackgroundAnticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms. Two other bisdioxopiperazine derivatives, probimane (Pro) and MST-16, were synthesized at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. Cytotoxic activities and mechanisms of Raz (+)-steroisomer (ICRF-187, dexrazoxane), Pro and MST-16 against tumor cells were evaluated by MTT colorimetry, flow cytometry and karyotyping.ResultsPro was cytotoxic to human tumor cell lines in vitro (IC50<50 μM for 48 h). Four human tumor cell lines (SCG-7901, K562, A549 and HL60) were susceptible to Pro at low inhibitory concentrations (IC50 values < 10 μM for 48 h). Although the IC50 against HeLa cell line of vincristine (VCR, 4.56 μM), doxorubicin (Dox, 1.12 μM) and 5-fluoruouracil (5-Fu, 0.232 μM) are lower than Pro (5.12 μM), ICRF-187 (129 μM) and MST-16 (26.4 μM), VCR, Dox and 5-Fu shows a low dose-related – high cytotoxic activity. Time-response studies showed that the cytotoxic effects of Pro are increased for 3 days in human tumor cells, whereas VCR, Dox and 5-Fu showed decreased cytotoxic action after 24 h. Cell cycle G2/M phase arrest and chromosome segregation blocking by Pro and MST-16 were noted. Although there was similar effects of Pro and MST-16 on chromosome segregation blocking action and cell cycle G2/M phase arrest at 1- 4 μM, cytotoxicity of Pro against tumor cells was higher than that of MST-16 in vitro by a factor of 3- 10 folds. Our data show that Pro may be more effective against lung cancer and leukemia while ICRF-187 and MST-16 shows similar IC50 values only against leukemia.ConclusionIt suggests that Pro has a wider spectrum of cytotoxic effects against human tumor cells than other bisdioxopiperazines, especially against solid tumors, and with a single cytotoxic pathway of Pro and MST-16 affecting chromosome segregation and leading also to cell G2/ M phase arrests, which finally reduces cell division rates. Pro may be more potent than MST-16 in cytotoxicity. High dose- and time- responses of Pro, when compared with VCR, 5-Fu and Dox, were seen that suggest a selectivity of Pro against tumor growth. Compounds of bisdioxopiperazines family may keep up their cytotoxic effects longer than many other anticancer drugs.

Highlights

  • Anticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms

  • Bisdioxopiperazines, including ICRF-154, razoxane (ICRF-159, Raz); ICRF-186 and ICRF-187), two stereo-isomers of Raz, and ICRF-193, developed in the UK, were some of the earliest agents found against a murine spontaneous metastatic model (Lewis lung carcinoma) in 1969 [1]

  • We only show typically one or two cells, the chromosomal characteristics in each group have an overall consistency (> 80 %) in each piece of preparation from cell treated with Pro, MST-16 and ICRF-187

Read more

Summary

Introduction

Anticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms. Probimane (Pro) and MST-16, were synthesized at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. Apart from data of anti-tumor activity [10,11,12], the pharmacological mechanisms of Pro as Raz, like the detoxication of Adriamycin (ADR), induced cardiotoxicities and synergism with ADR against leukemias were reported at Henan Academy of Medicine, Henan, China [13]. As the main researchers of Pro, we reported some novel biological actions of Pro, including the inhibition of the activity of calmodulin (CaM), a cellsignal regulator, which can explain anticancer actions and the combined cytotoxic effect of Pro with ADR [13,14] inhibiting lipoperoxidation (LPO) of erythrocytes [15], down-regulating sialic acid synthesis in tumors [16] and blocking the binding of fibrinogen to leukemia cells [17]. MST-16, as a licensed drug in Japan since 1994, was permitted for direct use in leukemia chemotherapy, mainly

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.