Abstract

Suppression of activation or proliferation, or induction of apoptosis in hepatic stellate cells (HSCs) have been proposed as therapeutic strategies against liver fibrosis. Salvia miltiorrhiza has been reported to exert antifibrotic effects in rats with hepatic fibrosis, but its mechanisms of action remain to be clarified. We have investigated the effects of salvianolic acid A (Sal A), an active principle from S. miltiorrhiza, on the proliferation-related biomarkers in a cell line of rat HSCs (HSC-T6) stimulated with platelet-derived growth factor-BB homodimer (PDGF-BB). DNA synthesis (bromodeoxyuridine (BrdU) incorporation), cell cycle related proteins and apoptosis markers were determined to evaluate the inhibitory effects of Sal A. The results showed that Sal A (1-10 microM) concentration-dependently attenuated PDGF-BB-stimulated proliferation (BrdU incorporation) in HSC-T6 cells. Sal A at 10 microM induced cell apoptosis in PDGF-BB-incubated HSCs, together with a reduction of Bcl-2 protein expression, induction of cell cycle inhibitory proteins p21 and p27, and down-regulation of cyclins D1 and E, suppression of Akt phosphorylation, reduction in PDGF receptor phosphorylation, and an increase in caspase-3 activity. Sal A exerted no direct cytotoxicity on primary hepatocytes and HSC-T6 cells under experimental concentrations. Our results suggested that Sal A inhibited PDGF-BB-activated HSC proliferation, partially through apoptosis induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.