Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are potent antitumoral agents but their side effects limit their clinical use. A novel class of drugs, nitric oxide-donating NSAIDs (NO-NSAIDs), was found to be safer and more active than classical NSAIDs. This study explored the effect of the NO-donating sulindac derivative, NCX 1102, on three human urothelial epithelial carcinoma cell lines (T24, 647V, and 1207) and primary cultures of normal urothelial cells. Cytotoxicity, antiproliferative effect, cell cycle alterations, morphological changes, and apoptosis were investigated after treatment with NCX 1102 in comparison with the native molecule. After treatment, there was a cytotoxic effect (with IC(50) at 48 h of 23.1 micro M on 647V, 19.4 micro M on T24, and 14.5 micro M on 1207) and an antiproliferative effect on all three cell lines with NCX 1102 but not with sulindac. No effect was detected on normal urothelial cells. Flow cytometric analysis showed a differential NCX 1102-induced accumulation of cells in various phases of the cell cycle, depending on cell line and concentration. NCX 1102 induced an occurrence of multinucleated cells in all cell lines and mitotic arrest in 647V and 1207. NCX 1102-treated T24 and 647V cell lines showed a significant difference of apoptotic cell amount when compared to controls. Our results demonstrated a greater antiproliferative potency of NCX 1102 compared to its parent molecule sulindac, and suggested that this new NO-NSAID may have therapeutic impact in the management of bladder cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.