Abstract

Several attempts have been made to synthesize and investigate modified flavonoids to improve their potential anticancer efficacy. This study aimed to determine the in vitro anti-viability, anti-migration, and anti-invasive effects of two novel hesperidin glycosides, hesperidin glucoside (HG1) and hesperidin maltoside (HG2), compared to original hesperidin and diosmin. Inhibitory effects on normal (MRC5) and cancer (A549) cell viability of hesperidin glycosides were investigated by the trypan blue and MTS assays. A scratch assay determined the suppressive effects on cancer cell migration, and inhibition of cancer cell invasion was investigated through Matrigel™. The selectivity index (SI), a marker of cell toxicity, was also determined for A549 relative to MRC5 cells. The cell viability trypan blue and MTS assays showed similar results of the inhibition of A549 cancer cells; HG1 and HG2 had lower IC50 than original hesperidin and diosmin. The SI of HG1 and HG2 was > 2 after 72-h culture. Investigation of cell migration showed that HG1 and HG2 inhibited the ability of gap closure in a time- and dose-dependent manner. The infiltration of the Matrigel™-coated filter by A549 cells was suppressed in the presence of HG1 and HG2. This result implied that HG1 and HG2 could inhibit cancer cell invasion. Our results suggest the inhibition of cancer cell migration and invasion in a time- and concentration-related manner with a favorable toxic profile. Moreover, HG1 and HG2 appeared potentially better agents than the original hesperidin for future anticancer development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call