Abstract

Pim kinases are upregulated in several forms of cancer, contributing to cell survival and tumor development, but their role in platelet function and thrombotic disease has not been explored. We report for the first time that Pim-1 kinase is expressed in human and mouse platelets. Genetic deletion or pharmacological inhibition of Pim kinase results in reduced thrombus formation but is not associated with impaired hemostasis. Attenuation of thrombus formation was found to be due to inhibition of the thromboxane A2 receptor as effects on platelet function were non-additive to inhibition caused by the cyclo-oxygenase inhibitor indomethacin or the thromboxane A2 receptor antagonist GR32191. Treatment with Pim kinase inhibitors caused reduced surface expression of the thromboxane A2 receptor and resulted in reduced responses to thromboxane A2 receptor agonists, indicating a role for Pim kinase in the regulation of thromboxane A2 receptor function. Our research identifies a novel, Pim kinase-dependent regulatory mechanism for the thromboxane A2 receptor and represents a new targeting strategy that is independent of cyclo-oxygenase-1 inhibition or direct antagonism of the thromboxane A2 receptor that, while attenuating thrombosis, does not increase bleeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.