Abstract

We have performed molecular dynamics simulations of glassy trehalose with various amounts of glycerol in order to explore the tendency for glycerol to antiplasticize the glass. We find that below a temperature of 300 K, the average density of the system containing 5%(wt) glycerol is larger than that of the pure trehalose system; the glass transition temperature is decreased, and the elastic constants are essentially unchanged. Taken together, these phenomena are indicative of mild antiplasticization, a type of behavior generally observed in polymeric systems. We have calculated the local elastic constants in our glassy materials and, consistent with previous simulations on a coarse-grained polymer, we find evidence of domains having negative elastic moduli. We have explored the ability of various measures of the Debye-Waller factor u(2) to predict the stiffness of our systems in terms of their elastic constants. We find that u(2) is indeed correlated with the behavior of the bulk elastic constants. On a local level, a correlation exists between the local moduli and u(2); however, that correlation is not strong enough to arrive at conclusive statements about the local elastic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.