Abstract

BackgroundArtemisinin-based combination therapy (ACT) is used as the first-line treatment of uncomplicated malaria caused by the Plasmodium falciparum parasite and chloroquine-resistant Plasmodium vivax parasites. Evidence of resistance to ACT has been reported in Cambodia, and without new and effective anti-malarial agents, malaria burden and mortality will rise.MethodsThe used MolPrint 2D fingerprints and the Tanimoto similarity index were used to perform a structural similarity search within the Malaria Box collection to select diverse molecular scaffolds that are different from artesunate. Next, the inhibitory potency against the P. falciparum 3D7 strain (SYBR Green I inhibition assay) and the cytotoxicity against HepG2 cells (MTT and neutral red assays) were evaluated. Then, the speed of action, the combination profile of selected inhibitors with artesunate, and the P. berghei in vivo activity of the best compounds were assessed.ResultsA set of 11 structurally diverse compounds from the Malaria Box with a similarity threshold of less than 0.05 was selected and compared with artesunate. The in vitro inhibitory activity of each compound confirmed the reported potencies (IC50 values ranging from 0.005 to 1 µM). The cytotoxicity of each selected compound was evaluated and used to calculate the selectivity index (SI values ranging from 15.1 to 6100). Next, both the speed of action and the combination profile of each compound with artesunate was assessed. Acridine, thiazolopyrimidine, quinoxaline, benzimidazole, thiophene, benzodiazepine, isoxazole and pyrimidoindole derivatives showed fast in vitro inhibitory activity of parasite growth, whereas hydrazinobenzimidazole, indenopyridazinone and naphthalenone derivatives were slow-acting in vitro inhibitors. Combinatory profile evaluation indicated that thiazolopyrimidinone and benzodiazepine derivatives have an additive profile, suggesting that the combination of these inhibitors with artesunate is favourable for in vitro inhibitory activity. The remaining compounds showed an antagonistic combinatory profile with artesunate. The collected data indicated that the indenopyridazinone derivative, a bc1 complex inhibitor, had a similar association profile in combination with proguanil when compared to atovaquone combined with proguanil, thereby corroborating the correlation between the molecular target and the combination profile. Lastly, the in vivo activity of the thiazolopyrimidinone and benzodiazepine derivatives were assessed. Both compounds showed oral efficacy at 50 mg/kg in a mouse model of Plasmodium berghei malaria (64% and 40% reduction in parasitaemia on day 5 post-infection, respectively).ConclusionsThe findings in this paper shed light on the relationship among the speed of action, molecular target and combinatory profile and identified new hits with in vivo activity as candidates for anti-malarial combination therapy.

Highlights

  • Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria caused by the P. falciparum parasite and chloroquine-resistant Plasmodium vivax parasites [3]

  • A similarity threshold of less than 0.05 was employed and 11 representative scaffolds were selected based on chemical diversity and commercial availability from the same supplier for inhibitory activity evaluation

  • Based on the efficacy of artemisinin-based combination therapy, a new anti-malarial drug will preferentially be administered in combination with artemisinin derivatives or some of the other drugs used against malaria [32]

Read more

Summary

Introduction

Artemisinin-based combination therapy (ACT) is used as the first-line treatment of uncomplicated malaria caused by the Plasmodium falciparum parasite and chloroquine-resistant Plasmodium vivax parasites. Evidence of resistance to ACT has been reported in Cambodia, and without new and effective anti-malarial agents, malaria burden and mortality will rise. Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria caused by the P. falciparum parasite and chloroquine-resistant Plasmodium vivax parasites [3]. Since 2008, evidence of resistance to ACT has been reported in Cambodia, and patients with delayed parasite clearance under artemisinin treatment have been routinely identified [5,6,7,8,9,10]. Malaria burden and mortality may significantly increase in the absence of new and effective drugs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call