Abstract

Malaria is a deadly parasitic disease, having a high rate of incidence and mortality across the world. The spread and development of resistance against chemical insecticides is one of the major problems associated with malaria treatment and control. Hence, plant based formulations may serve as an alternative source towards development of new drugs for treatment of malaria. The present study was aimed to evaluate the in vitro antiplasmodial activities of leaf, stem and flower of Calotropis gigantea against chloroquine-sensitive Plasmodium falciparum (3D7 strain) and its cytotoxicity against THP-1 cell lines. The plant extract which showed highest potency, in the in vitro antimalarial activity was further tested in vivo against P. berghei (ANKA strain) for validating its efficacy. The crude extracts of methanol, ethyl acetate and chloroform from leaves, stem and flowers of C. gigantea were prepared using Soxhlet apparatus. These extracts were screened for in vitro antimalarial activity against P. falciparum 3D7 strain. The cytotoxicity studies of crude extracts were conducted against THP-1 cell line. Phytochemical analysis of these extracts was carried out by following the standard methods. The damage to erythrocytes due to the plant extracts was tested. The in vivo study was conducted in P. berghei (ANKA) infected BALB/c albino mice by following the 4-day suppressive test. The phytochemical screening of the crude extracts showed the presence of alkaloids, flavonoids, triterpenes, tannins, carbohydrates, phenols, coumarins, saponins, phlobatannins and steroids. Out of all the extracts, the methanolic extract of leaves showed highest antimalarial activity with IC50 value of 12.17 μg/ml. In cytotoxicity evaluation, none of the crude extracts, showed cytotoxicity on THP-1 cell line. Since, methanolic leaf extract of C. gigantea showed good antimalarial activity in vitro, it was tested in vivo. In the in vivo results, the methanolic leaf extract of C. gigantea exhibited an excellent activity against P. berghei malaria parasite, wherein the decrement of parasite counts was moderately low and dose-dependent (p < 0.05) in comparison to the P. berghei infected control group, which showed a daily increase of parasitaemia unlike the chloroquine-treated group. The methanolic leaf extract of C. gigantea may act as potent alternative source for development of new medicines or drugs for the treatment of drug-resistant malaria. Thus, further research is needed to characterize the bioactive molecules of the extracts of C. gigantea that are responsible for inhibition of malaria parasite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.