Abstract
Two-dimensional antiplane time-harmonic Green’s functions for a circular inhomogeneity with an imperfect interface are derived. Here the linear spring model with vanishing thickness is employed to characterize the imperfect interface. Explicit expressions for the displacement and the stress fields induced by time-harmonic antiplane line forces located both in the unbounded matrix and in the circular inhomogeneity are presented. When the circular frequency approaches zero, our results reduce to those for the static case. Numerical results are presented to show the influence of the frequency and the imperfection of the interface on the stress and displacement fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.