Abstract

Rare-earth alloys $R{\mathrm{Ag}}_{1\ensuremath{-}x}{\mathrm{In}}_{x}$ (where $R=\mathrm{La},$ Ce, and Pr) are improper ferroelastic materials with the CsCl structure. A weakly first-order phase transition occurs with the softening of a zone-edge ${\mathrm{M}}_{5}^{\ensuremath{-}}$ mode that drives the material from a cubic phase to a tetragonal phase. Based on Ginzburg-Landau theory, we utilize the complete free-energy density, constructed from a six-dimensional primary order parameter (shuffle) that couples to strain, to study domain formation. The model allows the study of complex antiphase structures that appear in this cubic-to-tetragonal phase transition. With the help of numerical techniques, the order-parameter profiles across antiphase boundaries of different orientations and their temperature dependence are calculated. We find a single set of two coupled dimensionless governing equations, which are applicable to order-parameter profiles across all antiphase boundaries for this transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.