Abstract

Stable two-mode, and three-mode oscillations due to the spatial hole burning effect were observed experimentally with the increase of the pump power ratio in a laser-diode pumped sub-nanosecond microchip Cr,Yb:YAG self-Q-switched multimode laser. The stability of the output pulse trains was attributed to the mode coupling through antiphase dynamics between different modes. Modified multimode rate equations including the spatial hole-burning effect in the active medium and the non-linear absorption of the saturable absorber were proposed. Numerical simulations of the antiphase dynamics of such a laser were in good agreement with the experimental data, and the antiphase dynamics were explained by the evolution of the inversion population and the bleaching and recovery of the inversion population of the saturable absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.